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25.1 Introduction

▶ Handle with average treatment effects on randomized
experiments with two-sided noncompliance.

▶ Develop a model-based alternative to the moment-based
analyses (Chapter 23 and 24).
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25.2 The McDonald-Hiu-Tierney influenza vaccination data

For the ith patient, we have the following notations.

▶ Zi : indicator of whether the physician of ith patient received
a letter encouraging vaccination (random)

▶ Wi : indicator of receiving a flu shot

▶ Yi : binary response indicating the hospitalization for
flu-related illnesses

▶ Xi : a set of pre-treatment variables

▶ Gi : indicator of four compliance groups (bijective to
(Wi, Zi))
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25.2 The McDonald-Hiu-Tierney influenza vaccination data

▶ 1,931 female patients.

▶ Table 25.1: averages by treatment and assignment group for
outcomes and covariates.

▶ Table 25.2: the number of individuals in each of the eight
subsamples defined by Zi,Wi, Yi (2

3 = 8) with means of three
Xis: age, copd, heart.

▶ Note: the design of this experiment involved randomization
physicians rather than patients; for physicians with multiple
patients, outcomes of those patients would be correlated.
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25.2 The McDonald-Hiu-Tierney influenza vaccination data
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25.3 Covariates

Assumptions

1. Zi ⊥ (Wi(0),Wi(1), Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1))|Xi

2. Yi(0,Wi(0)) = Yi(1,Wi(1)) for all nevertakers and
alwaystakers

3. Zi ⊥ Yi(Zi,Wi(Zi))|Xi, Gi = nt

4. Zi ⊥ Yi(Zi,Wi(Zi))|Xi, Gi = at
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

Notations

▶ Let W(0),W(1) the N -vectors of secondary potential
outcomes with ith element equal to Wi(0),Wi(1), indicating
the primary treatment received under assignment to Zi = 0
and Zi = 1 respectively, and let W = (W(0),W(1)).

▶ We are interested in the local average treatment effect for
compliers,

τlate =
1

Nc

∑
i:Gi=co

(Yi(1)− Yi(0)) (1)

▶ Let missing and observed values for the treatment received in
similar fashion:

Wmis
i = Wi(1− Zi),W

obs
i = Wi(Zi).
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

Check the textbook for details and chapter 8 for model-based
approach without compliance.

▶ We cannot directly specify the posterior predictive distribution
of the missing data

f(Ymis,Wmis|Yobs,Wobs,X,Z)
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

▶ To derive the posterior of missing outcomes, we assume
probabilistic models on variables.

▶ Let θ roughly denotes all parameters used in the models that
are used in this model-based approach.

▶ We begin with setting two probabilistic models:
▶ f(Y|G,X; θ) =

∏N
i=1 f(Yi(0), Yi(1)|Gi, Xi; θ), and

▶ f(G|X; θ) =
∏N

i=1 f(Gi|Xi, θ).
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

f(Y|G,X; θ) =

N∏
i=1

f(Yi(0), Yi(1)|Gi, Xi; θ)

▶ Compliers

Yi(0)|Gi = co,Xi; θ ∼ N (Xiβco,c, σ
2
co,c)

Yi(1)|Gi = co,Xi; θ ∼ N (Xiβco,t, σ
2
co,t)

▶ Nevertakers, Alwaytakers

Yi(0)|Gi = nt,Xi; θ ∼ N (Xiβnt, σ
2
nt)

Yi(1)|Gi = at,Xi; θ ∼ N (Xiβat, σ
2
at)
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

f(G|X; θ) =

N∏
i=1

f(Gi|Xi, θ)

▶ Multinomial logit model

P(Gi = co|Xi, θ) =
1

1 + exp(Xiγnt) + exp(Xiγat)

P(Gi = nt|Xi, θ) =
exp(Xiγnt)

1 + exp(Xiγnt) + exp(Xiγat)

P(Gi = at|Xi, θ) =
exp(Xiγat)

1 + exp(Xiγnt) + exp(Xiγat)
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

Derivation of f(Ymis,Wmis|Yobs,Wobs,X,Z, θ)

▶ We can now compute

f(Y(0),Y(1),W(0),W(1)|X, θ)

1. f(Y,G|X, θ) = f(Y|G,X; θ)f(G|X; θ) (remember G is
one-to-one function of W(0),W(1))

2. (Y(0),Y(1),W(0),W(1)) is one-to-one of
(Ymis,Wmis,Yobs,Wobs)

3. f(Y(0),Y(1),W(0),W(1)|X, θ) =
f(Y(0),Y(1),W(0),W(1)|X,Z, θ) due to the
unconfoundness assumption.

▶ Thus we can derive f(Ymis,Wmis,Yobs,Wobs|X,Z, θ)
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

Then we infer the conditional distribution as

f(Ymis,Wmis|Yobs,Wobs,X,Z, θ)

=
f(Ymis,Yobs,Wmis,Wobs|X,Z, θ)∫ ∫

f(Ymis,Yobs,Wmis,Wobs|X,Z, θ) dYmis dWmis
.
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

▶ Derivation of the posterior distribution p(θ|Yobs,Wobs,X,Z)

L(θ|Ypbs,Wobs,X,Z) = f(Yobs,Wobs|X,Z, θ)

=

∫ ∫
f(Ymis,Yobs,Wmis,Wobs) dYmis dWmis.

▶ We multiply this likelihood function of θ by the prior
distribution for θ, p(θ) as

p(θ|Yobs,Wobs,X,Z) =
p(θ) · f(Yobs,Wobs|X,Z, θ)

f(Yobs,Wobs|X,Z)

=
p(θ) · f(Yobs,Wobs|X,Z, θ)∫
p(θ) · f(Yobs,Wobs|X,Z, θ) dθ

.

(2)
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

Derivation of the posterior distribution of missing potential
outcomes f(Ymis,Wmis|Yobs,Wobs,X,Z)

▶ We combine
▶ conditional posterior distribution of the missing potential

outcomes given the parameter θ :
f(Ymis,Wmis|Yobs,Wobs,X,Z, θ)

▶ posterior distribution of θ : p(θ|Yobs,Wobs,X,Z)

▶ so that we obtain

f(Ymis,Wmis|Yobs,Wobs,X,Z)∫
θ
f(Ymis,Wmis|Yobs,Wobs,X,Z, θ) · p(θ|Yobs,Wobs,X,Z) dθ.

(3)
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25.4 Analyses for Randomized Experiments with
Two-Sided Noncompliance

Derivation of the posterior distribution of estimands
▶ Infer the posterior distribution of τ given the observed data

(Yobs,Wobs,X,Z) using
▶ f(Ymis,Wmis|Yobs,Wobs,X,Z) and
▶ the fact that any estimand is a function of

(Y(0),Y(1),W(0),W(1),X,Z) can be rewritten as a
function of (Ymis,Yobs,Wmis,Wobs,X,Z).
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25.5 Simulation methods for obtaining draws from the
posterior distribution of the estimand given the data

▶ (1) The conditional joint distribution of Y is

f(Y|G,X; θ) =

N∏
i=1

f(Yi(0)|Gi, Xi, θ) · f(Yi(1)|Gi, Xi, θ).

(4)

▶ (2) The compliance type probability is

f(G|X; γ) =

N∏
i=1

p(Gi|Xi, γ) (5)

where γ is a subvector of θ.
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25.5 Simulation methods for obtaining draws from the
posterior distribution of the estimand given the data

(3) Likelihood of θ

▶ There are four possible patterns of missing and observed data:
(Zi,W

obs
i ) = (0, 0), (0, 1), (1, 0), (1, 1).

▶ Then, we have four different likelihood functions (L(z,w),i is

the likelihood of ith individual of Zi = z and Wi = w):

L(0,1),i = P (Gi = at|Xi, Zi, γ) · f(Yi(1)|Gi = at,Xi, Zi, βat)

L(1,0),i = P (Gi = nt|Xi, Zi, γ) · f(Yi(1)|Gi = nt,Xi, Zi, βnt)

L(0,0),i = P (Gi = nt|Xi, Zi, γ) · f(Yi(1)|Gi = nt,Xi, Zi, βnt)

+ P (Gi = co|Xi, Zi, γ) · f(Yi(0)|Gi = co,Xi, Zi, βco,c)

L(1,1),i = P (Gi = at|Xi, Zi, γ) · f(Yi(1)|Gi = at,Xi, Zi, βat)

+ P (Gi = co|Xi, Zi, γ) · f(Yi(1)|Gi = co,Xi, Zi, βco,t)

(6)
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25.5 Simulation methods for obtaining draws from the
posterior distribution of the estimand given the data

▶ Summing up, we have the overall likelihood function as

Lobs(θ|Zobs,Wobs,Yobs,Xobs)

=
∏

i∈S(0,1)

L(0,1),i

∏
i∈S(1,0)

L(1,0),i

∏
i∈S(0,0)

L(0,0),i

∏
i∈S(1,1)

L(1,1),i

(7)

where S(z,w) is the subset of indices of observed individuals
having Z = z and W = w.
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25.5 Simulation methods for obtaining draws from the
posterior distribution of the estimand given the data

Before obtaining completed likelihood, we compute the probability
of compliance as
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25.5 Simulation methods for obtaining draws from the
posterior distribution of the estimand given the data

▶ We have the complete-data likelihood function as
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25.5 Simulation methods for obtaining draws from the
posterior distribution of the estimand given the data

▶ Using these distributions, we can now obtain the posterior
distribution of outcomes.

▶ How to implement?

1. Initialize θ, simulate the compliance type with (25.8) and
(25.9).

2. Given compliance type G and θ, draw from the posterior of
the missing potential outcomes for compliers, i.e., impute
Yi(1) if Zi = 0 and Yi(0) if Zi = 1.

3. Compute τlate =
1

Nco

∑
i:Gi=co(Yi(1)− Yi(0)) where

Nco =
∑N

i=1 IGi=co is the number of compliers.
4. Update θ given Yobs,G,Z,X (maximize the complete

likelihood).
5. Return to Step 2 until break.
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25.6 Models for the Influenza vaccination data

(1) Model for Y|G,X; θ
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25.6 Models for the Influenza vaccination data

(2) Model for G|X; γ



26/30

25.6 Models for the Influenza vaccination data
(3) Likelihood of θ
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25.6 Models for the Influenza vaccination data

(4) Compliance probability

Similarly deriving for units with Zi = 1 and W obs
i = 1.
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25.6 Models for the Influenza vaccination data

(4) Results (Estimates of LATE)
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25.6 Models for the Influenza vaccination data

(4) Results (Marginal posterior distribution of τlate)
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25.6 Models for the Influenza vaccination data

What is the advantage of using model-based approach rather than
IV estimate?

▶ When we use this data and perform the moment-based, we
obtain E(Yi(1)|Gi = co) = −0.077 < 0 which should be
larger than or equal to zero. That is, the IV estimate does not
impose this restriction.

▶ Model-based approach naturally restrict.


