Causal inference: for statistics, social, and biomedical sciences Chapter 25: Model-based analysis in instrumental variable settings: randomized experiments with two-sided

noncompliance

Kunwoong Kim

2022.8.30.

<ロト < @ ト < E ト < E ト E の Q @ 1/30

Contents

- 1. Introduction
- 2. The McDonald-Hiu-Tierney influenze vaccination data
- 3. Covariates
- 4. Analyses for Randomized Experiments with Two-Sided Noncompliance
- 5. Obtaining Draws from Posterior Distribution of Estimated Given the Data
- 6. Models for the Influenza Vaccination Data
- 7. Results for the Influenza Vaccination Data

25.1 Introduction

- Handle with average treatment effects on randomized experiments with two-sided noncompliance.
- Develop a model-based alternative to the moment-based analyses (Chapter 23 and 24).

25.2 The McDonald-Hiu-Tierney influenza vaccination data

For the i^{th} patient, we have the following notations.

- Z_i: indicator of whether the physician of ith patient received a letter encouraging vaccination (random)
- ▶ W_i : indicator of receiving a flu shot
- Y_i: binary response indicating the hospitalization for flu-related illnesses
- ► X_i : a set of pre-treatment variables
- ► G_i: indicator of four compliance groups (bijective to (W_i, Z_i))

$$G_i = \begin{cases} \text{nt} & \text{if } W_i(0) = 0, \ W_i(1) = 0, \\ \text{co} & \text{if } W_i(0) = 0, \ W_i(1) = 1, \\ \text{df} & \text{if } W_i(0) = 1, \ W_i(1) = 0, \\ \text{at} & \text{if } W_i(0) = 1, \ W_i(1) = 1. \end{cases}$$

25.2 The McDonald-Hiu-Tierney influenza vaccination data

- ▶ 1,931 female patients.
- Table 25.1: averages by treatment and assignment group for outcomes and covariates.
- ▶ Table 25.2: the number of individuals in each of the eight subsamples defined by Z_i, W_i, Y_i ($2^3 = 8$) with means of three X_i s: age, copd, heart.
- Note: the design of this experiment involved randomization physicians rather than patients; for physicians with multiple patients, outcomes of those patients would be correlated.

25.2 The McDonald-Hiu-Tierney influenza vaccination data

			Me	ans		Mea		
	Mean	STD	No Letter $Z_i = 0$	Letter $Z_i^{\text{obs}} = 1$	t-Stat dif	No Flu Shot $W_i^{\text{obs}} = 0$	Flu Shot $W_i^{\text{obs}} = 1$	t-Stat dif
letter (Z_i)	0.53	(0.50)	0	1	-	0.49	0.63	[7.8]
flu shot (W_i^{obs})	0.24	(0.43)	0.18	0.29	[7.7]	0	1	_
$hosp(Y_i^{obs})$	0.08	(0.27)	0.09	0.06	[-3.2]	0.08	0.07	[-0.4]
age	65.4	(12.8)	65.2	65.6	[1.1]	64.9	67.1	[4.9]
copd	0.20	(0.40)	0.21	0.20	[-1.3]	0.20	0.23	[2.4]
heart	0.56	(0.50)	0.56	0.57	[0.6]	0.55	0.60	[2.4]

Table 25.1. Summary Statistics for Women by Assigned Treatment, Received Treatment: Covariates and Outcome for Influenza Vaccination Data

Table 25.2. Summary Statistics for Women by Assigned Treatment, Received Treatment and Outcome, and Possible Latent Compliance Status for Influenza Vaccination Data

Type under	Assign.	Receipt of Flu Shot	Hosp.	# of Units			
Monotonicity and	(Letter)				Means		
Exclusion Restr.	Z_i	Wiobs	Yobs	1,931	age	copd	heart
Complier or nevertaker	0	0	0	685	64.7	0.18	0.524
Complier or nevertaker	0	0	1	64	62.9	0.33	0.77
Alwaystaker	0	1	0	148	67.8	0.28	0.60
Alwaystaker	0	1	1	20	68.9	0.30	0.70
Nevertaker	1	0	0	672	65.4	0.19	0.55
Nevertaker	1	0	1	51	62.0	0.29	0.69
Complier or alwaystaker	1	1	0	277	66.6	0.20	0.57
Complier or alwaystaker	1	1	1	14	67.3	0.21	0.79

<ロト < 回 ト < 三 ト < 三 ト ミ の へ O 6/30</p>

Assumptions

1. $Z_i \perp (W_i(0), W_i(1), Y_i(0, 0), Y_i(0, 1), Y_i(1, 0), Y_i(1, 1)) | X_i$

- 2. $Y_i(0, W_i(0)) = Y_i(1, W_i(1))$ for all nevertakers and alwaystakers
- 3. $Z_i \perp Y_i(Z_i, W_i(Z_i)) | X_i, G_i = nt$
- 4. $Z_i \perp Y_i(Z_i, W_i(Z_i)) | X_i, G_i = at$

Notations

- ▶ Let W(0), W(1) the N-vectors of secondary potential outcomes with ith element equal to W_i(0), W_i(1), indicating the primary treatment received under assignment to Z_i = 0 and Z_i = 1 respectively, and let W = (W(0), W(1)).
- We are interested in the local average treatment effect for compliers,

$$\tau_{late} = \frac{1}{N_c} \sum_{i:G_i = co} (Y_i(1) - Y_i(0))$$
(1)

<ロト<置ト<Eト E のへで 8/30

Let missing and observed values for the treatment received in similar fashion:

$$W_i^{mis} = W_i(1 - Z_i), W_i^{obs} = W_i(Z_i).$$

Check the textbook for details and chapter 8 for model-based approach without compliance.

 We cannot directly specify the posterior predictive distribution of the missing data

$$f(\mathbf{Y}^{mis}, \mathbf{W}^{mis} | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z})$$

(ロト (部) (E) (E) E のへの 9/30

- To derive the posterior of missing outcomes, we assume probabilistic models on variables.
- Let θ roughly denotes all parameters used in the models that are used in this model-based approach.

◆□▶ < @ ▶ < E ▶ < E ▶ E り < 0 < 0/30</p>

We begin with setting two probabilistic models:

•
$$f(\mathbf{Y}|\mathbf{G}, \mathbf{X}; \theta) = \prod_{i=1}^{N} f(Y_i(0), Y_i(1)|G_i, X_i; \theta)$$
, and
• $f(\mathbf{G}|\mathbf{X}; \theta) = \prod_{i=1}^{N} f(G_i|X_i, \theta)$.

$$f(\mathbf{Y}|\mathbf{G}, \mathbf{X}; \theta) = \prod_{i=1}^{N} f(Y_i(0), Y_i(1)|G_i, X_i; \theta)$$

$$Y_i(0)|G_i = co, X_i; \theta \sim \mathcal{N}(X_i\beta_{co,c}, \sigma_{co,c}^2)$$
$$Y_i(1)|G_i = co, X_i; \theta \sim \mathcal{N}(X_i\beta_{co,t}, \sigma_{co,t}^2)$$

Nevertakers, Alwaytakers

$$Y_i(0)|G_i = nt, X_i; \theta \sim \mathcal{N}(X_i\beta_{nt}, \sigma_{nt}^2)$$
$$Y_i(1)|G_i = at, X_i; \theta \sim \mathcal{N}(X_i\beta_{at}, \sigma_{at}^2)$$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ (P 11/30

$$f(\mathbf{G}|\mathbf{X};\theta) = \prod_{i=1}^{N} f(G_i|X_i,\theta)$$

Multinomial logit model

$$\mathbb{P}(G_i = co|X_i, \theta) = \frac{1}{1 + \exp(X_i \gamma_{nt}) + \exp(X_i \gamma_{at})}$$
$$\mathbb{P}(G_i = nt|X_i, \theta) = \frac{\exp(X_i \gamma_{nt})}{1 + \exp(X_i \gamma_{nt}) + \exp(X_i \gamma_{at})}$$
$$\mathbb{P}(G_i = at|X_i, \theta) = \frac{\exp(X_i \gamma_{at})}{1 + \exp(X_i \gamma_{nt}) + \exp(X_i \gamma_{at})}$$

<ロ > < 回 > < 画 > < 三 > < 三 > 三 の へ C 12/30

Derivation of $f(\mathbf{Y}^{mis}, \mathbf{W}^{mis} | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z}, \theta)$

We can now compute

$$f(\mathbf{Y}(0), \mathbf{Y}(1), \mathbf{W}(0), \mathbf{W}(1) | \mathbf{X}, \theta)$$

- 1. $f(\mathbf{Y}, \mathbf{G} | \mathbf{X}, \theta) = f(\mathbf{Y} | \mathbf{G}, \mathbf{X}; \theta) f(\mathbf{G} | \mathbf{X}; \theta)$ (remember **G** is one-to-one function of $\mathbf{W}(0), \mathbf{W}(1)$)
- (Y(0), Y(1), W(0), W(1)) is one-to-one of (Y^{mis}, W^{mis}, Y^{obs}, W^{obs})
- 3. $f(\mathbf{Y}(0), \mathbf{Y}(1), \mathbf{W}(0), \mathbf{W}(1) | \mathbf{X}, \theta) = f(\mathbf{Y}(0), \mathbf{Y}(1), \mathbf{W}(0), \mathbf{W}(1) | \mathbf{X}, \mathbf{Z}, \theta)$ due to the unconfoundness assumption.

▶ Thus we can derive $f(\mathbf{Y}^{mis}, \mathbf{W}^{mis}, \mathbf{Y}^{obs}, \mathbf{W}^{obs} | \mathbf{X}, \mathbf{Z}, \theta)$

Then we infer the conditional distribution as

$$\begin{split} & f(\mathbf{Y}^{mis}, \mathbf{W}^{mis} | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z}, \theta) \\ = & \frac{f(\mathbf{Y}^{mis}, \mathbf{Y}^{obs}, \mathbf{W}^{mis}, \mathbf{W}^{obs} | \mathbf{X}, \mathbf{Z}, \theta)}{\int \int f(\mathbf{Y}^{mis}, \mathbf{Y}^{obs}, \mathbf{W}^{mis}, \mathbf{W}^{obs} | \mathbf{X}, \mathbf{Z}, \theta) \, d\mathbf{Y}^{mis} \, d\mathbf{W}^{mis}}. \end{split}$$

<ロト < 回 ト < 三 ト < 三 ト 三 の Q (~ 14/30)

• Derivation of the posterior distribution $p(\theta | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z})$

$$\begin{split} \mathcal{L}(\theta|\mathbf{Y}^{pbs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z}) &= f(\mathbf{Y}^{obs}, \mathbf{W}^{obs}|\mathbf{X}, \mathbf{Z}, \theta) \\ &= \int \int f(\mathbf{Y}^{mis}, \mathbf{Y}^{obs}, \mathbf{W}^{mis}, \mathbf{W}^{obs}) \, d\mathbf{Y}^{mis} \, d\mathbf{W}^{mis} \end{split}$$

• We multiply this likelihood function of θ by the prior distribution for θ , $p(\theta)$ as

$$p(\theta | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z}) = \frac{p(\theta) \cdot f(\mathbf{Y}^{obs}, \mathbf{W}^{obs} | \mathbf{X}, \mathbf{Z}, \theta)}{f(\mathbf{Y}^{obs}, \mathbf{W}^{obs} | \mathbf{X}, \mathbf{Z})} = \frac{p(\theta) \cdot f(\mathbf{Y}^{obs}, \mathbf{W}^{obs} | \mathbf{X}, \mathbf{Z}, \theta)}{\int p(\theta) \cdot f(\mathbf{Y}^{obs}, \mathbf{W}^{obs} | \mathbf{X}, \mathbf{Z}, \theta) \, d\theta}.$$
(2)

<ロト < @ ト < E ト < E ト E の へ C 15/30

Derivation of the posterior distribution of missing potential outcomes $f(\mathbf{Y}^{mis}, \mathbf{W}^{mis} | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z})$

- We combine
 - conditional posterior distribution of the missing potential outcomes given the parameter θ :
 f(Y^{mis}, W^{mis}|Y^{obs}, W^{obs}, X, Z, θ)
 - ▶ posterior distribution of θ : $p(\theta|\mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z})$
- so that we obtain

$$f(\mathbf{Y}^{mis}, \mathbf{W}^{mis} | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z}) \int_{\theta} f(\mathbf{Y}^{mis}, \mathbf{W}^{mis} | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z}, \theta) \cdot p(\theta | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z}) \, d\theta.$$
(3)

Derivation of the posterior distribution of estimands

- ▶ Infer the posterior distribution of τ given the observed data $(\mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z})$ using
 - $f(\mathbf{Y}^{mis}, \mathbf{W}^{mis} | \mathbf{Y}^{obs}, \mathbf{W}^{obs}, \mathbf{X}, \mathbf{Z})$ and
 - ► the fact that any estimand is a function of (Y(0), Y(1), W(0), W(1), X, Z) can be rewritten as a function of (Y^{mis}, Y^{obs}, W^{mis}, W^{obs}, X, Z).

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 のへで 17/30

▶ (1) The conditional joint distribution of Y is

$$f(\mathbf{Y}|\mathbf{G}, \mathbf{X}; \theta) = \prod_{i=1}^{N} f(Y_i(0)|G_i, X_i, \theta) \cdot f(Y_i(1)|G_i, X_i, \theta).$$
(4)

(2) The compliance type probability is

$$f(\mathbf{G}|\mathbf{X};\gamma) = \prod_{i=1}^{N} p(G_i|X_i,\gamma)$$
(5)

<ロト < 目 > < 三 > < 三 > < 三 > つ へ C 18/30

where γ is a subvector of θ .

(3) Likelihood of θ

- ▶ There are four possible patterns of missing and observed data: $(Z_i, W_i^{obs}) = (0, 0), (0, 1), (1, 0), (1, 1).$
- ▶ Then, we have four different likelihood functions $(\mathcal{L}_{(z,w),i}$ is the likelihood of i^{th} individual of $Z_i = z$ and $W_i = w$):

$$\begin{aligned} \mathcal{L}_{(0,1),i} &= P(G_i = at | X_i, Z_i, \gamma) \cdot f(Y_i(1) | G_i = at, X_i, Z_i, \beta_{at}) \\ \mathcal{L}_{(1,0),i} &= P(G_i = nt | X_i, Z_i, \gamma) \cdot f(Y_i(1) | G_i = nt, X_i, Z_i, \beta_{nt}) \\ \mathcal{L}_{(0,0),i} &= P(G_i = nt | X_i, Z_i, \gamma) \cdot f(Y_i(1) | G_i = nt, X_i, Z_i, \beta_{nt}) \\ &+ P(G_i = co | X_i, Z_i, \gamma) \cdot f(Y_i(0) | G_i = co, X_i, Z_i, \beta_{co,c}) \\ \mathcal{L}_{(1,1),i} &= P(G_i = at | X_i, Z_i, \gamma) \cdot f(Y_i(1) | G_i = at, X_i, Z_i, \beta_{at}) \\ &+ P(G_i = co | X_i, Z_i, \gamma) \cdot f(Y_i(1) | G_i = co, X_i, Z_i, \beta_{co,t}) \end{aligned}$$
(6)

Summing up, we have the overall likelihood function as

$$\mathcal{L}_{obs}(\theta | \mathbf{Z}^{obs}, \mathbf{W}^{obs}, \mathbf{Y}^{obs}, \mathbf{X}^{obs}) = \prod_{i \in \mathcal{S}(0,1)} \mathcal{L}_{(0,1),i} \prod_{i \in \mathcal{S}(1,0)} \mathcal{L}_{(1,0),i} \prod_{i \in \mathcal{S}(0,0)} \mathcal{L}_{(0,0),i} \prod_{i \in \mathcal{S}(1,1)} \mathcal{L}_{(1,1),i}$$
(7)

where $S_{(z,w)}$ is the subset of indices of observed individuals having Z = z and W = w.

Before obtaining completed likelihood, we compute the probability of compliance as

$$\Pr(G_i = co|Y_i^{\text{obs}} = y, W_i^{\text{obs}} = 0, Z_i = 0, X_i = x, \theta)$$
(25.8)

$$=\frac{p(\operatorname{co}|x,\beta) \cdot f(y|x,\beta_{\operatorname{co,c}})}{p(\operatorname{co}|x,\beta) \cdot f(y|x,\beta_{\operatorname{co,c}}) + p(\operatorname{nt}|x,\beta) \cdot f(y|x,\beta_{\operatorname{nt}})}$$

Similarly,

$$\Pr(G_i = co|Y_i^{\text{obs}} = y, W_i^{\text{obs}} = 1, Z_i = 1, X_i = x, \theta)$$
(25.9)

$$=\frac{p(\operatorname{co}|x,\beta) \cdot f(y|x,\beta_{\operatorname{co,t}})}{p(\operatorname{co}|x,\beta) \cdot f(y|x,\beta_{\operatorname{co,t}}) + p(\operatorname{at}|x,\beta) \cdot f(y|x,\beta_{\operatorname{at}})}$$

<ロ > < 母 > < 三 > < 三 > 三 の へ C 21/30

$$= \prod_{i:G_i=\mathrm{nt}} f(Y_i(0)|G_i = \mathrm{nt}, X_i, Z_i, \beta_{\mathrm{nt}})$$

$$\times \prod_{i:G_i=\mathrm{at}} f(Y_i(1)|G_i = \mathrm{at}, X_i, Z_i, \beta_{\mathrm{at}}) \prod_{i:G_i=\mathrm{co}, Z_i=0} f(Y_i(0)|G_i = \mathrm{co}, X_i, Z_i, \beta_{\mathrm{co,c}})$$

$$\times \prod_{i:G_i=\mathrm{co}, Z_i=1} f(Y_i(1)|G_i = \mathrm{at}, X_i, Z_i, \beta_{\mathrm{co,t}}) \prod_{i:G_i=\mathrm{co}} p(G_i = \mathrm{co}|X_i, Z_i, \beta)$$

$$\times \prod_{i:G_i=\mathrm{at}} p(G_i = \mathrm{at}|X_i, Z_i, \beta) \prod_{i:G_i=\mathrm{nt}} p(G_i = \mathrm{nt}|X_i, Z_i, \beta).$$

< □ ▷ < @ ▷ < 볼 ▷ < 볼 ▷ 볼 · ♡ < @ 22/30

- Using these distributions, we can now obtain the posterior distribution of outcomes.
- ► How to implement?
 - 1. Initialize θ , simulate the compliance type with (25.8) and (25.9).
 - 2. Given compliance type G and θ , draw from the posterior of the missing potential outcomes for compliers, i.e., impute $Y_i(1)$ if $Z_i = 0$ and $Y_i(0)$ if $Z_i = 1$.
 - 3. Compute $\tau_{late} = \frac{1}{N_{co}} \sum_{i:G_i=co} (Y_i(1) Y_i(0))$ where $N_{co} = \sum_{i=1}^{N} I_{G_i=co}$ is the number of compliers.
 - Update θ given Y^{obs}, G, Z, X (maximize the complete likelihood).
 - 5. Return to Step 2 until break.

(1) Model for $\mathbf{Y}|\mathbf{G}, \mathbf{X}; \theta$

$$\Pr(Y_i(0) = y | X_i = x, G_i = co, \theta) = \frac{\exp(y \cdot x\beta_{co,c})}{1 + \exp(x\beta_{co,c})},$$

$$\Pr(Y_i(1) = y | X_i = x, G_i = \operatorname{co}, \theta) = \frac{\exp(y \cdot x\beta_{\operatorname{co},t})}{1 + \exp(x\beta_{\operatorname{co},t})},$$

for nevertakers,

$$\Pr(Y_i(0) = y | X_i = x, G_i = \text{nt}, \theta) = \frac{\exp(y \cdot x\beta_{\text{nt}})}{1 + \exp(x\beta_{\text{nt}})},$$

and, finally, for alwaystakers,

$$\Pr(Y_i(1) = y | X_i = x, G_i = \operatorname{at}, \theta) = \frac{\exp(y \cdot x\beta_{\operatorname{at}})}{1 + \exp(x\beta_{\operatorname{at}})}.$$

< □ > < ₱ > < ≡ > < ≡ > < ≡ < 24/30

(2) Model for $\mathbf{G}|\mathbf{X};\gamma$

$$\Pr(G_i = g | X_i = x) = \begin{cases} \frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{nt})}, & \text{if } g = \cos(x) \\ \frac{\exp(x\gamma_{nt})}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{nt})}, & \text{if } g = nt \\ \frac{\exp(x\gamma_{at})}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{nt})}, & \text{if } g = at, \end{cases}$$

< □ ▷ < @ ▷ < Ξ ▷ < Ξ ▷ Ξ の Q ^Q 25/30

25.6 Models for the Influenza vaccination data (3) Likelihood of θ

$$\begin{aligned} \mathcal{L}_{obs}(\theta | \mathbf{Z}^{obs}, \mathbf{W}^{obs}, \mathbf{Y}^{obs}, \mathbf{X}^{obs}) \\ &= \prod_{i \in \mathcal{S}(0,0)} \left[\frac{\exp\left(X_{i}\gamma_{nt}\right)}{1 + \exp\left(X_{i}\gamma_{at}\right) + \exp\left(X_{i}\gamma_{nt}\right)} \cdot \frac{\exp\left(Y_{i}^{obs} \cdot X_{i}\beta_{nt}\right)}{1 + \exp\left(X_{i}\beta_{nt}\right)} \right. \\ &+ \frac{1}{1 + \exp\left(X_{i}\gamma_{at}\right) + \exp\left(X_{i}\gamma_{nt}\right)} \cdot \frac{\exp\left(Y_{i}^{obs} \cdot X_{i}\beta_{co0}\right)}{1 + \exp\left(X_{i}\beta_{co0}\right)} \right] \\ &\times \prod_{i \in \mathcal{S}(0,1)} \frac{\exp\left(X_{i}\gamma_{at}\right) + \exp\left(X_{i}\gamma_{nt}\right)}{1 + \exp\left(X_{i}\gamma_{at}\right) + \exp\left(X_{i}\gamma_{nt}\right)} \cdot \frac{\exp\left(Y_{i}^{obs} \cdot X_{i}\beta_{at}\right)}{1 + \exp\left(X_{i}\beta_{at}\right)} \\ &\times \prod_{i \in \mathcal{S}(1,0)} \frac{\exp\left(X_{i}\gamma_{at}\right) + \exp\left(X_{i}\gamma_{nt}\right)}{1 + \exp\left(X_{i}\gamma_{nt}\right) + \exp\left(X_{i}\gamma_{nt}\right)} \cdot \frac{\exp\left(Y_{i}^{obs} \cdot X_{i}\beta_{nt}\right)}{1 + \exp\left(X_{i}\beta_{nt}\right)} \\ &\times \prod_{i \in \mathcal{S}(1,1)} \left[\frac{\exp\left(X_{i}\gamma_{at}\right) + \exp\left(X_{i}\gamma_{nt}\right)}{1 + \exp\left(X_{i}\gamma_{nt}\right) + \exp\left(X_{i}\gamma_{nt}\right)} \cdot \frac{\exp\left(Y_{i}^{obs} \cdot X_{i}\beta_{at}\right)}{1 + \exp\left(X_{i}\beta_{at}\right)} \\ &+ \frac{1}{1 + \exp\left(X_{i}\gamma_{at}\right) + \exp\left(X_{i}\gamma_{nt}\right)} \cdot \frac{\exp\left(Y_{i}^{obs} \cdot X_{i}\beta_{co,1}\right)}{1 + \exp\left(X_{i}\beta_{co,1}\right)} \right]. \end{aligned}$$

(4) Compliance probability

$$\begin{aligned} \Pr(G_{i} &= \operatorname{co}|Y_{i}^{\text{obs}} = y, W_{i}^{\text{obs}} = 0, Z_{i} = 0, X_{i} = x, \theta) \end{aligned} (25.10) \\ &= \frac{p(\operatorname{co}|x, \beta) \cdot f(y|x, \beta_{\operatorname{co,c}})}{p(\operatorname{co}|x, \beta) \cdot f(y|x, \beta_{\operatorname{co,c}}) + p(\operatorname{nt}|x, \beta) \cdot f(y|x, \beta_{\operatorname{nt}})} \\ &= \left(\frac{\frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{\exp(x\beta_{\operatorname{co,c}})}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{\exp(x\beta_{\operatorname{co,c}})}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at}) + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{\exp(x\beta_{\operatorname{nt}})}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} + \frac{\exp(x\gamma_{at})}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})}}\right)^{y} \\ &\times \left(\frac{\frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})}}{\frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})} \cdot \frac{1}{1 + \exp(x\gamma_{at}) + \exp(x\gamma_{at})}}\right)^{1 - y}. \end{aligned}$$

Similarly deriving for units with $Z_i = 1$ and $W_i^{obs} = 1$.

4 ロ ト 4 伊 ト 4 三 ト 4 三 ト 三 の 4 で 27/30

(4) Results (Estimates of LATE)

	MLE (flat prior)	Post Mode	Quantiles of Posterior Distribution with Model for Potential Outcomes given Covariates								
			q.025	No Cov med	q ^{.975}	q ^{.025}	Parallel med	q ^{.975}	q ^{.025}	Unrestricte med	ed q ^{.975}
7late	-0.11	-0.10	-0.32	-0.15	-0.02	-0.32	-0.14	-0.01	-0.48	-0.16	0.13
ITTW	0.12	0.13	0.09	0.12	0.15	-0.03	-0.02	-0.00	0.05	0.10	0.13
ITTY	-0.01	-0.01	-0.04	-0.02	-0.00	0.09	0.12	0.15	-0.04	-0.02	0.01
$\mathbb{E}[Y_i(0) G_i = \mathrm{co}]$	0.11	0.15	0.06	0.19	0.35	0.69	0.71	0.72	0.01	0.22	0.53
$\mathbb{E}[Y_i(1) G_i = \mathrm{co}]$	0.00	0.06	0.00	0.03	0.09	0.16	0.18	0.19	0.00	0.04	0.31
$\mathbb{E}[Y_i(0) G_i = \mathrm{nt}]$	0.08	0.08	0.06	0.07	0.08	0.06	0.18	0.35	0.06	0.07	0.08
$\mathbb{E}[Y_i(1) G_i = \mathrm{at}]$	0.11	0.11	0.08	0.09	0.10	0.00	0.04	0.09	0.06	0.09	0.10

(4) Results (Marginal posterior distribution of τ_{late})

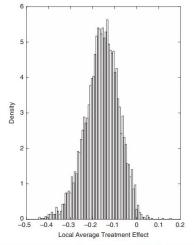


Figure 25.1. Histogram-based estimate of the distribution of the LATE, influenza vaccination data

What is the advantage of using model-based approach rather than IV estimate?

▶ When we use this data and perform the moment-based, we obtain $\mathbf{E}(Y_i(1)|G_i = co) = -0.077 < 0$ which should be larger than or equal to zero. That is, the IV estimate does not impose this restriction.

Model-based approach naturally restrict.